The Effect of Attractive Interactions and Macromolecular Crowding on Crystallins Association
نویسندگان
چکیده
In living systems proteins are typically found in crowded environments where their effective interactions strongly depend on the surrounding medium. Yet, their association and dissociation needs to be robustly controlled in order to enable biological function. Uncontrolled protein aggregation often causes disease. For instance, cataract is caused by the clustering of lens proteins, i.e., crystallins, resulting in enhanced light scattering and impaired vision or blindness. To investigate the molecular origins of cataract formation and to design efficient treatments, a better understanding of crystallin association in macromolecular crowded environment is needed. Here we present a theoretical study of simple coarse grained colloidal models to characterize the general features of how the association equilibrium of proteins depends on the magnitude of intermolecular attraction. By comparing the analytic results to the available experimental data on the osmotic pressure in crystallin solutions, we identify the effective parameters regimes applicable to crystallins. Moreover, the combination of two models allows us to predict that the number of binding sites on crystallin is small, i.e. one to three per protein, which is different from previous estimates. We further observe that the crowding factor is sensitive to the size asymmetry between the reactants and crowding agents, the shape of the protein clusters, and to small variations of intermolecular attraction. Our work may provide general guidelines on how to steer the protein interactions in order to control their association.
منابع مشابه
Crowding induced entropy-enthalpy compensation in protein association equilibria.
A statistical mechanical theory is presented to predict the effects of macromolecular crowding on protein association equilibria, accounting for both excluded volume and attractive interactions between proteins and crowding molecules. Predicted binding free energies are in excellent agreement with simulation data over a wide range of crowder sizes and packing fractions. It is shown that attract...
متن کاملCompression of random coils due to macromolecular crowding: scaling effects.
The addition of a macromolecular crowding agent to a dilute solution of polymer exerts a compressive force that tends to reduce the size of the chain. We study here the effect of changing the size ratio between the random coil and the crowding agent. The compression occurs at lower crowding agent concentration, Φ when polymer molecular weight increases. The Flory exponent ν(Φ) decreases from ν(...
متن کاملHow can biochemical reactions within cells differ from those in test tubes?
Nonspecific interactions between individual macro-molecules and their immediate surroundings ("background interactions") within a medium as heterogeneous and highly volume occupied as the interior of a living cell can greatly influence the equilibria and rates of reactions in which they participate. Background interactions may be either repulsive, leading to preferential size-and-shape-dependen...
متن کاملInteractions of Macromolecular Crowding Agents and Cosolutes with Small-Molecule Substrates: Effect on Horseradish Peroxidase Activity with Two Different Substrates
The importance of solution composition on enzymatic reactions is increasingly appreciated, particularly with respect to macromolecular cosolutes. Macromolecular crowding and its effect on enzymatic reactions has been studied for several enzymes and is often understood in terms of changes to enzyme conformation. Comparatively little attention has been paid to the chemical properties of small-mol...
متن کاملwebSDA: a web server to simulate macromolecular diffusional association
Macromolecular interactions play a crucial role in biological systems. Simulation of diffusional association (SDA) is a software for carrying out Brownian dynamics simulations that can be used to study the interactions between two or more biological macromolecules. webSDA allows users to run Brownian dynamics simulations with SDA to study bimolecular association and encounter complex formation,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016